请选择 进入手机版 | 继续访问电脑版
设为首页收藏本站

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 15522|回复: 6

【综述】3D智能数字化与3D打印:"中国智造"推动全球第三次工业革命

[复制链接]

19

主题

31

听众

1946

积分

超级版主

Rank: 8Rank: 8

性别
保密
最后登录
2016-11-4
在线时间
7 小时
帖子
20
beyondsky 发表于 2013-4-30 12:10:32 |显示全部楼层
上一次我们邀请了美国麻省理工学院(MIT)的林达华博士为我们撰写概率模型与计算机视觉方面的综述(http://www.sigvc.org/bbs/thread-728-1-1.html),受到广大站友的热烈欢迎和积极反馈。

最近,分别受《中国科学报》主编、《光明日报》、《中国自动化学会通讯》、《北京科技报》邀请撰写了一系列关于3D智能数字化与3D打印的综述评论:

「3D数字化与3D打印: 用“虚拟”再造“现实”」(
上篇)。         《中国科学报》技术评论专栏第5777期2013-4-10
「3D数字化与3D打印:转向“中国智造”的产业机遇」(
下篇)。《中国科学报》技术评论专栏第5782期2013-4-17
「3D智能数字化与3D打印:“中国智造”的新机遇」。 《光明日报》2013
「智能数字化与3D打印:“中国智造”推动“全球第三次工业革命”」。《中国自动化学会通讯》2013
「3D打印把人工智能梦想照进现实」。《北京科技报》技术评论专栏,第3436期,2013-7-1

以下是综合各个版本后的完整图文版,以飨读者:

image001.jpg
      gmrb2.jpg
      zdhxh.gif

3D智能数字化与3D打印:“中国智造”推动“全球第三次工业革命”

本期话题:3D智能数字化与3D打印

话题背景

      近年来,我们经常能听到“3D”这个名词,且往往跟高科技联系在一起,如3D显示、3D电影、3D扫描、3D打印等等。按理说,人类每天就生活在三维空间中,3D对我们来说本应是一个再寻常不过的概念。现在,3D之所以被认为是“高科技”,很大程度上归因于我们通过高科技数字化的手段,使得客观世界中的3D实体能够在虚拟世界中得以高精度重建(3D扫描)、智能化编辑(3D设计)、真实感高清展示(3D显示),乃至重新返回至客观世界(3D打印)。就学科专业而言,3D技术横跨计算机视觉、计算机图形学、模式识别与智能系统、复杂系统与自动控制、数据挖掘与机器学习、工程材料学、光机电一体化等,是名副其实的“技术密集型”高科技。

      当今,中国正处于从“中国制造”向“中国智造”迈进的重要时期,3D智能数字化及3D打印技术可以让国内的设计师和工程师从产品制造工艺的束缚中解放出来,更加专注于产品本身的智力创造,大跨步进入想法到产品(Mind to Product)的“所想即所得”全新智造时代。3D智能数字化和3D打印的产业化无疑将为促进我国传统产业升级、彻底摆脱长期处于制造业产业链底端的尴尬局面发挥十分重要的推进作用。
complex.jpg

image002.jpg

3D打印出的任意复杂设计形状[1](传统制造工艺无法加工)


■作者:吴怀宇
(作者任职单位:中国科学院,自动化研究所
模式识别国家重点实验室、中国-欧洲信息,自动化与应用数学联合实验室
通讯地址/网址:http://www.sigvc.org/people.htm#why

img9.jpg
img5.jpg
img8.jpg

imgA.jpg
imgC.jpg

作者本人的3D数字化模型与3D打印头像


      “科技史上最不可思议的事就是中国没能维持住其技术霸主地位。” 工业革命史学家、美国人文与科学院院士乔尔•莫基尔如此评论。以“四大发明”为标志,古代中国一直在多个工业领域居世界领先地位。然而到了18世纪初,中国的领导地位逐渐丧失,欧洲国家以及美国成为世界工业大国。

      终于,在经历了三百年的沉沦之后,在2010年中国重新成为世界头号制造业大国,此前美国在这个位置上盘踞了一个多世纪。虽然重回第一,我国制造业发展却呈现出明显的不足:大而不强、徘徊于产业链低端、自主创新能力弱、资源配置能力弱、能源消耗大等。

      与此同时,人类在经历了18世纪以“纺织工业机器化”为标志的第一次工业革命和20世纪初以“汽车大规模流水线生产”为标志的第二次工业革命之后,正步入全球第三次工业革命时代。这一次新工业革命[2]的特点可归纳为:智能数字化、分布式网络化、个性定制化、绿色可持续化[3]。特别是3D打印的推出,跨越了虚拟的比特世界和实体的原子世界之间的鸿沟,其革命性的意义超越了之前个人电脑和互联网的出现。2012年,《经济学人》、《福布斯》、《纽约时报》等杂志都称3D打印将引发“第三次工业革命”,期望以此让制造业重新回流到欧美等西方发达国家。据预测,3D打印行业的产值将在2016年达到31亿美元。2012年8月,美国总统奥巴马拨款3000万美元,在俄亥俄州建立了国家级3D打印添加剂工业研究中心,并计划第一步投入5亿美元用于3D打印,以确保美国制造业不再继续转移到中国和印度。但笔者在下文中认为恰恰相反,3D打印相关技术将给新兴国家带来了更多机遇,将使制造业——尤其是制造业的上游产业链,进一步掌握在中国等新兴国家手中。

      1、3D智能数字化与3D打印: 用“虚拟”再造“现实”

      目前,全球正在兴起新一轮数字化、智能化制造浪潮。欧美等发达国家面对近年来制造业竞争力的下降,抓住以网络化为驱动的“创客运动”的发展机遇[4],大力倡导“再工业化、再制造化”战略。以智能数字化为核心的“第三次工业革命”引发的前提和基础是模式识别、视觉计算[5]、自动化控制、机器学习、大规模数据挖掘等学科的成熟以及大批量低成本传感设备的普及。这种深层次的产业革命,不仅将席卷人类的体力劳动岗位,也将毫不留情地占据人类之前赖以自豪的脑力劳动岗位。任何能够提取出统计规律、特征描述或编码索引的日常工作都将被自动化。可以确信的是,将来一个人薪酬的高低,将取决于他掌握智能数字化的专业程度。

      而作为“第三次工业革命”的前沿代表技术——3D数字化打印,成功地将虚拟的数字智能化技术与实实在在的工业产品桥接在一起[6]。据预测,3D打印行业的产值将在2016年达到31亿美元。作为快速成形技术的一种,3D打印以经过智能化处理后的3D数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印、迭加成形的方式来增量构造物体。

      3D打印实质上反映了制造业向智能化不断演进的历程。由于3D打印个性化定制的特点,决定了其不具备规模经济(即所谓的“大规模生产”),相应地,3D打印技术推动的未来商业模式之一将是云制造,其由数百万个小规模、自动组织的生产节点组成。这个由众多小型制造业企业组成的超大规模分布式网络,结合云端的智能计算服务,将形成一种全新的“大规模定制”解决方案。

      1.1、3D智能数字化设计技术的发展现状

      在传统的2D打印机时代,我们可以把经计算机处理过的Word等格式的电子文档在纸张上打印出来。2D打印机对我们绝大多数人而言,仅仅是一种工具而已,因此,我们可能不太会去在意使用的是何种品牌的2D打印机,只要它能把“电子文档”转变成“纸制文档”就行。我们几乎把所有的关注点都放在了电子文档内容的设计和制作上,因为它才是我们工作的价值体现,这种情况在3D打印时代也完全一样。      

      因此,智能数字化软件是3D打印的核心[7],其利用计算机来生成数字化的3D图纸模型,以便输出到3D打印机。正所谓“巧妇难为无米之炊”,缺少数字化文件支持的3D打印机将会变得毫无用处。与此同时,计算机需要知道如何更好地设计形状[8-10],目前有两大类的方法可以进行3D数字化。

      第一大类是使用智能数字化设计软件,由设计师从无到有地设计3D数字化产品。最简单的几何表示是采用传统的建模工具,如使用SolidWorks、AutoCAD、3ds Max、Maya、Rhino3D、Zbrush等常见3D商业设计软件,还有Blender、Tinkercad、3DTin、SketchUp等多款各有特色的免费设计软件,来表达曲面网格形状。其次是使用参数设计软件,如简单指定长宽高这3个参数,就能获得一个定制的茶杯形状模型。更加智能化的是编程式设计,计算机把形状的设计过程描述成一系列有特定顺序的操作步骤,有点像按照食谱而不是最终的外观来制作蛋糕。编程式智能设计可以轻易地在这个蛋糕上绘制几百万个规则的精美图案,而这对于手工设计来说犹如噩梦。为了生成更加丰富的个性图案,还可采用复杂的生长式智能系统,按照一套既定的生长规则加上随机扰动,随着时间的推移发展,将一颗种子形状最终生长成独一无二的定制形状。智能化达到一定层次后,更可让设计的形状根据未知环境实时调整,适应各种物理和美学约束条件。比如,基于算法的智能设计软件能够根据物理环境调整建筑结构的空间形状,从而使建筑结构更稳定。采用人工智能进行设计的另一个途径是增强人和计算机之间的交互性,用户不需要了解计算机设计的内部原理,只需从计算机推荐的参考形状中不断地作出挑选,计算机根据反馈对参考形状进行优化调整,如此反复,直到最终生成一个满意的设计。

      对于要求具有复杂的内部中空、凹陷、互锁或者有大量规则细节图案的形状加工,3D打印机是首选的制造设备。智能化设计可对零件进行优化,减轻重量,同时保持原有强度和其他关键性能。还可使产品成为一个整体,这样也减少了零部件的装配。然而,3D打印机往往并不能直接打印任意复杂的形状。大多数设计文件,特别是那些复杂物体的设计文件,都需要专业人员进行调整优化。此外,一名好的设计师必须考虑支撑结构,以便在3D打印过程中帮助物体保持形状。还有一个困难的问题是如何解决多种材料的混合制造。只有实现了混合材料打印,多元结构的部件才能一次制造出来,以避免传统的首先制造单个(不同材料)零件再组装在一起的弊端。

      1.2智能数字化扫描技术的发展现状

      当然,并非人人都有能力自己设计3D形状,因此第二大类的3D数字化就是3D扫描(俗称3D照相),基于计算机视觉、计算机图形学、模式识别与智能系统、光机电一体化控制等技术对现实存在的3D物体进行扫描采集,以获得逼真的数字化重建。3D扫描技术分主动(Active)扫描与被动(Passive)扫描两种。

      主动式扫描是对被测物体附加投射光,包括激光、可见白光、超声波与 X 射线等。其中激光线式的扫描(如手持式激光:Handhold  Laser),可以扫描大型的物体,但是由于每次只能投射一条光线,所以扫描速度慢。另外,由于激光会对生物体以及比较珍贵的物品造成伤害,所以不能应用于某些特定领域。而目前最新的基于结构白光(Structured Lighting)的扫描设备,能同时测量物体的一个面,点云密度大、精度高,在快速采集物体三维表面信息方面具有独特优势。除此之外还有基于时差测距(Time-of-Flight)、三角测距(Triangulation)、调变光(Modulated Lighting)和光照编码(Light Coding,如Microsoft Kinect设备就是采用此原理,具有实时性的特点)的主动式扫描技术等等。

      被动式扫描对被测物体不发射任何光,而是通过采集被测物表面对环境光线的反射,因不需要规格特殊的硬件,往往只需要一台或几台照相机获取多个视角的图片即可,因此成本非常便宜。被动式重建方法,如Autodesk的123D Catch,通常基于计算机三维视觉的理论方法,如立体视觉法(Stereoscopic)、从明暗恢复形状方法(Shape from Shading)、立体光度法(Photometric Stereo)和轮廓法等。被动式扫描的精度和鲁棒性受环境光照和照片质量的影响较大。

      在获得3D扫描的原始数据后,往往还需对其进行复杂的后处理,如将多个视角的形状片段进行对齐(Alignment)和拼接配准(Registration),以统一在同一个世界坐标系下。此外还需进行漏洞修补、噪声去除、三角化、重网格化等,以生成最终的高质量水密(Watertight)流形曲面。目前,还没有一种成熟的3D数字化技术能够对自然界的任意形状进行全自动地真实重建,如对于人体的头发等,还不能获得理想的结果。因此在实际操作过程中,往往需要同时结合多种扫描技术,以及一定的手工编辑,以获得一个好的重建质量。

         在获得数字化模型之后,通常还需要进行个性化编辑定制,才会最终输出到3D打印机。这种追求高附加值的个性化定制,之前都是以较大的手工工作量为代价的,尤其是当需要“大批量定制”时。因此,为提高定制效率,智能数字化技术将发挥关键的作用。比如,需要为一万名用户定制个性化的眼镜、服装、帽子、鞋子,如果使用人工逐一为每位用户进行手工测量和手工设计,工作量和成本都将变得不可接受。而应用智能化数字技术,如采用视觉计算方法,利用摄像头自动采集、分析提取每位用户的体貌个性特征,并自动根据视觉美感进行形状设计、颜色肤色搭配等,可极大地缩减定制周期

        可以说,数字化是“第三次工业革命”的媒介和载体,而智能化则是手段和核心。目前,智能化技术的应用研究尚处于起步阶段,离工业化的实际应用尚有一定的距离,但最近几年发展很快。

       1.3智能云网:云端智能服务和云制造

      通过上面的介绍可以看出,智能数字化技术涉及视觉计算、模式识别与智能系统、复杂系统与自动控制、数据挖掘与机器学习等众多“高科技”学科,普通技术人员掌握的门槛很高。因此,这些技术将来会以云端智能化服务的形式提供给普通用户和开发者。以定制一双鞋子为例,普通用户只需在手机上下载一个App应用,给自己的双脚拍几张照片,并指定喜欢的款式和颜色,之后位于云端的智能计算服务将根据用户上传的照片重建出3D脚形,然后把鞋子设计出来。所涉及的复杂智能技术全都在云端完成,App的开发者根本无需了解。用户提交定单后,系统在云制造集群中搜索到邻近的打印结点,以便快速送货上门。

      以上涉及到云制造的概念,其对3D打印这种“规模定制”的运营模式尤其关键。维基百科对云制造的定义:“具有各种制造资源和能力,可以智能检测并联结更广泛的互联网,具备自动管理和控制能力”。每个单独的制造节点都是自主的、通过网络互联的。云制造的优点是资源可以扩展,还可自动平衡负载。制造商可以根据项目的特别需求,如本批次是定制1千件还是1万件,来构建一个临时的集群。每个云制造商的产能可能很小,但集群后的整体产能完全可以满足项目需求,且非常经济、灵活。

      在本文中,我们把3D打印产业模式所依赖的云端智能化服务和云制造统称为“智能云网”,其具体的运作流程如图2所示。智能化、云端化、网络化、数字化将是3D打印未来的重要特点。

yun.jpg
“智能云网”模式下的3D打印产业链

      1.4、3D打印技术的发展现状

      近年来,我们从各类媒体上获得的关于3D打印的新闻逐渐增多,比如时尚的衣服、合脚的鞋子、营养的食物、后现代的房屋和自行车、汽车、无人飞机等都被打印出来了,3D打印正在以一种不可思议的速度渗透进我们生活中“衣食住行”的各个方面。

         3D打印诞生于上世纪80年代,用于将虚拟世界中任意复杂的3D数字化模型变成客观世界中真实存在的3D实体。通俗来讲,只要你能够设计出来,你就能够通过3D打印技术打印出任何你想要的个性化产品。与传统的“切削去除材料”的加工技术(如3D雕刻)完全不同,3D打印采用分层加工、叠加成形的方式“逐层增加材料”来生成3D实体。3D打印无需机械加工或任何模具,就可加工任意复杂的中空形状,解决了许多过去难以制造的复杂结构零件(如复杂的航空发动机叶片)的成形问题。而且产品结构越复杂,制造效率优势(研制周期缩短、原材料节省)越显著。目前3D打印在电影制作、游戏动漫、医疗、教育、建筑、文物考古、生产制造业都发挥了其独特的作用。
image003.jpg

image004.jpg
image005.jpg
3D打印机所打印的枪支部件(已承受数百次实弹射击测试)

      与2D打印机类似,3D打印机也是由控制组件、机械组件、打印头、耗材和介质等架构组成。3D打印一般采用分层加工、叠加成型的方式来完成3D实体的打印工作。以喷墨沉积(3DP)技术为例:每一层的打印过程分为两步,首先喷洒一层均匀的粉末,然后在需要成型的区域喷洒一层特殊胶水,胶水液滴本身很小且不易扩散,粉末遇到胶水会迅速固化黏结,而没有胶水的区域仍保持松散状态。这样在一层粉末一层胶水的交替下,实体模型将会被“打印”成型,打印完毕后只要从松散的粉末堆中取出模型即可,而剩余粉末还可循环利用。

          3D打印成为近年来的新闻热点,与2006年英国Reprap开源项目的发布不无关系。Reprap是3D桌面打印发展的基石,直接催生了包括Makerbot在内的一大批廉价普及型3D打印机,价格从几千到几万元人民币不等。而在高精度大尺寸工业打印领域,美国3D Systems和Stratasys两大公司占据了大部分的市场份额。当然,在这个新技术竞争激烈的领域不乏挑战者,如Mcor公司2012年新推出的Iris全彩打印机只需普通A4办公纸作为原材料,具有超低的成本优势和绿色环保的优势。在国内,由亚洲制造业协会联合华中科技大学、北京航空航天大学、清华大学等科研机构和企业共同发起的中国3D打印技术产业联盟于2012年成立。

      与我们日常使用的2D打印机相比,3D打印机所能使用的材料已经不再局限于墨粉和纸张。目前,3D打印机已经能够使用各式各样的新材料(液体、粉末、塑料丝、金属、沙子、纸张、甚至巧克力、人体干细胞等),通过喷墨沉积、熔融沉积成形、激光烧结、立体光刻、电子束熔炼、超声波固结等工艺将三维数字模型变成实物,从玩具、工具、到厨房用品、建筑、时尚衣服应有尽有,甚至还可直接打印具备触感的人造耳朵、人体骨骼、人造假牙、鲜肉,以及枪支、跑车、无人飞机等。因此,如果说2D打印机属于一种必不可少的办公用品,那么3D打印机则将会成为一种使用广泛的个性化制造工具。利用3D打印机,未来甚至能够打印出人类。
image006.jpg
美国研究人员制造的一架3D打印无人飞机,巡航时速可达到45英里

      3D打印技术目前面临着以下几个主要问题亟待解决:
      一是与传统切削加工技术相比,产品尺寸精度和表面质量相差较大,产品性能还达不到许多高端金属结构件的要求;
      二是大批量生产效率还比较低,不能完全满足工业领域的需求;
      三是设备和耗材成本仍然很高,如基于金属粉末的打印成本远高于传统制造。

      由此可见,3D打印技术虽然是对传统制造技术的一次革命性突破,但它却不可能完全取代切削、铸锻等传统制造技术,两者之间应是一种相互支持与补充,共同完善与发展的良性合作关系。

      通过智能感知设备,3D打印机还可控制制造的行为,对打印的过程进行实时监控,如产品的质量和强度,然后根据反馈信息随时做出调整,以实现闭环控制。也就是说,这台3D打印机具有学习和控制的能力。可以想象的是,会有专为糖尿病患者推出的食品打印机,通过微型皮肤植入物监测病人的血糖,依据每日不同的身体状况为其量身打印食物。在将来,通过把人工智能从计算机拓展到现实世界,还可打印具备感知和学习能力的智能物品。此时,3D打印机就是新一代智能机器人,它们能设计、制造、修理、回收其他机器,甚至能够改进和升级其他机器和自身,达到“机器制造机器”的新境界

      3D智能数字化与3D打印技术相结合所带来的优势,不仅仅在于通过复制手段真实还原现实世界,而且还可以在3D数字化的基础之上,通过再设计工作,创造出一个更加美好的世界来。以电影《阿凡达》为例,很多美轮美奂的场景都无法从现实中直接拍摄,而通过数字化的艺术设计,再使用3D打印机直接打印出来,这样不仅免去了费时费力的手工制作,而且获得了超越现实的逼真效果。3D智能数字化与3D打印的完美结合,将实现用“虚拟”再造“现实”的崭新境界。

      2、3D智能数字化与3D打印:转向“中国智造”的产业机遇

      在3D 打印技术领域,我们和国际相比虽然还有一定的差距,但已不太大。我国自20世纪90年代初开始追踪3D打印技术研究,目前已取得了一批基础研究和产业化成果,部分甚至处于世界领先水平。例如,北京航空航天大学、西北工业大学开展的金属熔敷成形技术研究,在国际上首次突破了钛合金、超高强度钢等难加工大型复杂整体关键构件激光成形工艺。目前在北京、西安、武汉等地,紧跟国外也都相继开设了3D照相打印馆。然而,与国外相比,国内的产业规模化程度不高。现在市场上无论3D扫描还是3D打印,无论高端还是低端,大部分都是国外的产品。因此,3D智能数字化和3D打印在我国具有巨大的发展机遇。

      2.1、3D智能数字化设备和软件系统的产业化机遇

      作为3D打印的前端和上游产业链,3D智能数字化扫描是一项关键技术。因为对于家庭的日常3D打印任务而言,最重要的一个环节是进行全(半)自动的数字化建模。目前国内的3D扫描设备在采集质量和速度上和国外的同类产品相差不大,价格却可仅为四分之一左右。然而在市场化和产业化上仍有明显差距,大部分产品都出自小型公司,尚未形成有影响力的品牌。这方面有待于政府和商业机构进一步加大支持和投入。待时机成熟,完全可以使得国产3D扫描设备占据绝大部分国内市场甚至国际市场。

      特别需要指出的是,在3D数字处理软件方面,我国与国外的差距仍然较大。实际上,待3D硬件设备成熟之后,国际3D打印市场的核心竞争将转移到相关的配套软件上来。目前国内的3D扫描厂商大多直接采用国外的大型成熟商业软件,如美国的Geomagic Studio等。原因在于3D数字处理软件的研发需要巨额的资金投入和长期的技术积累,目前国内的小型公司难以承受研发风险、以及可能的知识产权侵权风险。但从长远来看,拥有国产化的3D数字处理软件是十分必要的,且是可行的,因为目前国内的科研单位(如中国科学院、浙江大学、清华大学等)已基本解决了相关的技术难点,只是没有资金实力形成功能完整的大型软件系统。

      除了大型的3D数字处理软件,还有很多可实现单一特色功能的智能化软件值得关注。前面已提到过,智能数字化技术的应用目前在国内和国外都处于起步阶段,差距不大。而且这类功能单一软件研发风险小,可以作为缩小与国外整体差距的另一个突破口。如一款实现网格混搭的新软件MeshUp,可通过混合任意数量的网格和部分网格,来创建新的可直接输出到3D打印机的数字化对象,比如可将用户的人脸模型置入一个茶杯外壁并一起打印出来。


image007.jpg
   image008.jpg
一款实现网格混搭的软件MeshUp

      又如一款叫做Chopper的软件,能够将一个尺寸大于3D打印机的模型,像它的名字那样“剁(Chop)”成几块。同时,软件自动生成连接节点,方便用户组装和粘合分散的部件。
image009.jpg
Chopper软件自动将尺寸大于3D打印机的模型分成多个部件

      当前,3D打印的主要矛盾在于有限的打印设备精度和用户期待的理想打印结果之间存在着较大的差距,而通过对3D数字形状进行智能算法研究将有效地缓解这一矛盾。比如,可对3D形状的频域特征空间进行智能化分析[11],优化生成最匹配于当前打印机精度的3D数字化模型。
image010.jpg
image011.jpg
对3D形状的频域特征空间进行智能化分析

      可以预见的是,以视觉计算、模式识别、机器学习等为代表的智能化技术将获得广泛的工业化应用,配以低成本的传感设备,可以进行自动感知捕获、特征提取、统计分析、以及智能化定制设计,以满足高附加值“批量定制”的工业需求。

      2.2、建立完善“中国智造”的产业生态圈

      2010年,中国大约有1.3亿人从事制造业,约占全球制造业工人的40%。同时,中国的竞争优势早已不仅仅是低成本的普通劳动力,还有大量雇佣成本适中的中等技术人才、工程师、科研人员、以及完善的产业链条、高度适应性的巨大产能和本身巨大的市场。中国的研发设计能力实际上是过剩的,这从目前市面上琳琅满目的国产手机种类以及所建立的庞大“山寨帝国”就可窥豹一斑。当前工业制造的主要门槛是复杂的制造工艺和设备,而一站式3D打印机的主要优势恰恰是零技能制造,这给我国广大技术人员研发高附加值、个性化定制的创新产品开启了广阔天地。同时,中国巨大的人口基数,又可把原本小众的利基市场变成大众市场。

        我国要完成向“中国智造”产业模式的转变,关键要形成一大批能够以3D产品创意设计、生产为职业的群体,建立完善良性循环而非恶性竞争的创新生态圈,这方面可借鉴美国Shapeways和Quirky公司的设计、制造、销售全产业链模式。以美国Shapeways的在线打印服务模式为例,帮助人们利用3D打印技术制作自己想要的产品,至今已获得了数千万美元的风险投资,证明了其模式在目前是成功的。用户可以上传自己设计好的3D模型,支付一定费用后,Shapeways利用设在纽约“未来工厂”里的50台工业3D打印机将其打印出来并邮寄给用户。又如Quirky公司,鼓励用户通过Facebook和Twitter等社交媒体提交他们的产品想法,也可以对其他人的想法投票、评分,并提出修改意见。该公司每周都会挑选一个最好的产品创意,将它变为现实。从命名、LOGO设计到包装,Quirky将参与产品开发的每一个环节。Quirky的一个典型成功案例是一位中学生所设计的插线板,2012年获得了50万美元的净收入,而设计者本人的收入则超过5万美元。

      我国目前已拥有较大规模的产品设计人员。当前存在的问题是缺乏有保障的生态环境支持这些设计人员去原创自己的风格,摆脱低水平仿造、低水平收入的恶性循环。这方面需要国家出台相关的知识产权保护法案,以及提供政策上的支持(如建立类似于Kickstarter的融资平台),还有营造创新文化氛围。3D打印机、数控机床及以Arduinos为代表的开源硬件平台降低了创新门槛,结合我国处于零部件供应链中心(如深圳华强北)的优势地位,可极大提高产品研发速度和降低研发成本。此外,我国还需进一步加强产业创新人才的教育和培训,整体提升国人的动手能力和DIY(Do It Yourself:自己动手设计和制作)兴趣,可将3D打印技术纳入中学和大学的学科建设体系,增加必修环节和实训项目,为以后类似Shapeways和Quirky模式在中国的产业化形成提供相应的人才储备和技术储备。

      目前,商业化高端3D打印设备的定价权掌握在国外少数几家公司手中。这些高端设备售价非常昂贵,而国内尚缺乏相关的替代品,因此极大地增加了3D打印行业的运营成本。可喜的是,我国目前在高端3D打印设备的制造技术上与国外差距不大,在某些方面甚至有所超越。因此,加强我国在3D打印关键技术领域的研发投入,如设备和功能材料的制备、混合材料打印、智能控制问题的解决、激光器/喷嘴等核心元部件的研制等,并进行商业化生产销售,对市面上的国外同类产品进行价格上的有效制衡,是支撑“中国智造”模式的前提和保障。

      如前所述,要打印一件3D物品,目前技术上还没有一套全自动的解决方案,仍需要大量复杂的智力和手工劳动,如3D形状的数字化扫描过程、产品创意的智能化设计、3D打印产品的清理和抛光上色等。在欧美等发达国家,人工费用非常昂贵,这样导致设计和打印一件3D产品价格不菲。以国外一家3D照相馆为例,其出售3D扫描和3D打印的人物雕像,一个6英寸的全彩雕像成本价约为2,493元人民币。这个价位在国内几乎没有可行性。而在国内,完全可以使用国产的智能扫描设备,经设计师使用智能化软件定制加工之后,再采用低成本的单色材料,并利用低成本的单色3D打印机(如Reprap、Makerbot等)将模型打印出来,最后雇用极具价格优势的美工流水线进行手动上色,全部成本在“中国智造”模式下可控制在100元人民币以内。
image012.jpg
国外一个6英寸的全彩雕像[12]成本价为2493元人民币,而在“中国智造”模式下成本可控制在100元人民币以内

      由此可见,即使在由“批量生产”转向“批量定制”的时代,以3D打印为代表的“第三次工业革命”仍有很大的希望在中国落地生根,形成“中国智造”的新模式,而不是制造业回流到欧美。智能数字化技术将深刻改变传统行业的产业模式,将为我国制造业的转型发展带来前所未有的机遇。

参考文献:
[1] BathshebaSculpture, http://www.bathsheba.com/
[2] (美) 彼得·马什 Peter Marsh,《新工业革命》,中信出版社,2013.
[3] (美) 杰里米·里夫金(Jeremy Rifkin,《第三次工业革命:新经济模式如何改变世界》,中信出版社,2012.
[4] (美) 克里斯·安德森 Chris Anderson,《创客:新工业革命》,中信出版社,2012.
[5] 马颂德,张正友. 《计算机视觉-计算理论与算法基础》. 科学出版社, 2003.
[6] 王飞跃,从社会计算到社会制造:一场即将来临的产业革命,中国科学院院刊,第27卷,第6期,658-669页,2012.
[7] (美) 胡迪·利普森 Hod Lipson,梅尔芭·库曼 Melba Kurman,3D打印:从想象到现实》, 中信出版社,2013.
[8] 周昆. 数字几何处理:理论与应用. PhDthesis, 浙江大学, 2002.
[9] 吴怀宇. 基于离散微分几何的数字几何处理研究. PhDthesis, 中国科学院, 2008.
[10] Huai-Yu Wu,Chunhong Pan, Hongbin Zha, Qing Yang, Songde MA. "PartwiseCross-Parameterization via Nonregular Convex Hull Domains". IEEETransactions On Visualization And Computer Graphics (TVCG), Volume: 17 , Issue:10, 1531-1544, 2011.
[11] Huai-Yu Wu,Hongbin Zha, Tao Luo, Xu-Lei Wang, Songde MA. "Global and LocalIsometry-Invariant Descriptor for 3D Shape Comparison and PartialMatching". IEEE Conference on Computer Vision and Pattern Recognitionn(CVPR 2010), pp.438-445, San Francisco, California, June 13-18, 2010.
[12] OMOTE 3DSHASHIN KAN, http://omote3d.com/
踩过的脚印

性别
保密
最后登录
2014-1-16
在线时间
12 小时
帖子
6
Zerg 发表于 2013-4-30 21:19:04 |显示全部楼层
前排围观。
回复

使用道具 举报

Rank: 2

QQ
1902671770
性别
保密
最后登录
2016-7-25
在线时间
0 小时
帖子
1
zybbbb 发表于 2013-5-17 21:44:55 |显示全部楼层
好东西
回复

使用道具 举报

性别
保密
最后登录
2014-10-16
在线时间
91 小时
帖子
7
whq 发表于 2013-8-25 22:01:21 |显示全部楼层
关注内部东西。
回复

使用道具 举报

0

主题

3

听众

1976

积分

版主

Rank: 7Rank: 7Rank: 7

性别
保密
最后登录
2015-5-16
在线时间
23 小时
帖子
24
zyinCV 发表于 2013-10-23 16:25:19 |显示全部楼层
不错。。。
回复

使用道具 举报

性别
保密
最后登录
2014-11-26
在线时间
5 小时
帖子
8
lxin201 发表于 2014-3-20 16:20:14 |显示全部楼层
看了LZ的帖子,我只想说一句很好很强大!
回复

使用道具 举报

QQ
851980453
性别
最后登录
2016-12-19
在线时间
129 小时
帖子
65
bianhua 发表于 2014-4-1 09:23:59 |显示全部楼层
很有前景的样子啊!
回复

使用道具 举报

快捷回复:
您需要登录后才可以回帖 登录 | 立即注册

Archiver|手机版|视觉计算研究论坛 ( 京ICP备09019267号 )  

GMT+8, 2017-11-19 08:55 , Processed in 0.891389 second(s), 52 queries , Gzip On.

Powered by SIGVC.org

© 2012- , Beijing, China

回顶部